

Immunohistochemistry Expression Gata3 Based on Subtypes of Ovarian Carcinoma at Haji Adam Malik General Hospital Medan 2019-2021**Intan Nefia Alamanda, Betty, Delyuzar, Lidya Imalda Laksmi, Jessy Chrestela, Soekimin**Department of Anatomical Pathology, Faculty of Medicine, Universitas Sumatera Utara
Jl. Universitas No. 1, Medan 20155.Correspondence author: Intan Nefia Alamanda, Betty
Department of Anatomical Pathology, Faculty of Medicine, Universitas Sumatera Utara
Jl. Universitas No. 1, Medan 20155.
e-mail: nefaintan@gmail.com; andbethgo@yahoo.com

Received : 06-04-2023

Accepted : 11-07-2023

Published: 30-09-2024

ABSTRACT**Background**

Ovarian carcinoma is a cancer with high mortality in women and although comprehensive management with surgery and chemotherapy at an advanced stage, the resistance rate is still low. GATA3 contributes to the progression of malignancy and its expression is one of the predictors in some malignancies, but the results are mixed in ovarian carcinoma. High GATA3 expression is associated with the aggressiveness of tumor growth and poor prognosis of ovarian carcinoma.

Methods

This research is an cross-sectional descriptive-analytical study with 33 histological specimens diagnosed with ovarian carcinoma from medical records/archives at H. Adam Malik Hospital Medan. Each sample specimen was stain with GATA3, and several various histopathological subtypes of ovarian carcinoma.

Results

From a total of 33 samples, 14 samples were serous carcinoma, 6 samples were mucinous carcinoma, 7 samples were endometrioid carcinoma, and 6 samples were clear cell carcinoma. GATA3 was expressed in 42.5% of serous carcinoma. Positive expression of GATA3 is mostly found in advanced ovarian carcinoma, older age, and histopathological type of serous carcinoma.

Conclusion

Immunohistochemistry GATA3 expression was expressed in 42.4% of serous carcinoma, 21.2% in endometrioid carcinoma, 18.2% in clear cell carcinoma, and 18.2% in mucinous carcinoma.

Keywords: ovarian carcinoma, GATA3, immunohistochemistry

INTRODUCTION

Ovarian cancer is the second most common malignancy after breast cancer. The Global Burden of Cancer (GLOBOCAN) in 2020 stated that ovarian cancer ranks as the 8th most cancer in women worldwide with 313,959 new cases and an ovarian cancer death rate of 207,252. The incidence of ovarian cancer in Indonesia in 2020 ranks 10th, with 14,896 new cases and 9,581 deaths from ovarian cancer. Geographic variation in the incidence of ovarian cancer has increased in North America, Central-Eastern Europe, and Southeast Asia.¹⁻⁴

The most commonly encountered histological picture of ovarian carcinoma is the high-grade serous carcinoma type. Other histological types of ovarian carcinoma are low-grade serous carcinoma, mucinous adenocarcinoma, endometrioid adenocarcinoma, seromucinous carcinoma, clear cell adenocarcinoma, malignant Brenner tumor carcinosarcoma, and mixed cell adenocarcinoma. The morphology of the entity has a different etiology than the genetic characteristics, phenotype, and behavior of the tumor and includes a response to chemotherapy. Ovarian carcinoma (more than 70%) is more commonly diagnosed at an advanced stage, i.e., stage III or IV based on the FIGO stage, because there are still few effective screening strategies at an early stage as well as nonspecific early symptoms of carcinoma.⁴⁻⁷

GATA3 is a derivative of the transcription factor GATA, located on chromosome 10p14 is one of the 6 transcription factors in the DNA sequence functioning to regulate the process of differentiation during embryogenic development. GAT3 expression is associated with a poor prognosis in ovarian carcinoma. In ovarian carcinoma, GATA3 acts as an oncogenic protein related to TP53, which serves to stimulate the occurrence of apoptosis. If GATA3 is strongly expressed in ovarian carcinoma, it will interfere with the work of TP53 so that there will be resistance to apoptosis.¹⁰

METHOD

This study is an analytical descriptive study that aims to assess the immunohistochemistry expression of GATA3 in ovarian carcinoma with a cross-sectional approach. Samples that met the inclusion and exclusion criteria were diagnosed with ovarian carcinoma with Hematoxylin & eosin staining, and then paraffin block was stained for GATA3

monoclonal antibodies (L50-823 clone primary mice). GATA3 expression positive was identified by staining brown granules in the nucleus of tumor cells using CX23 Olympus microscope. Assessment by means of assessing the area of the colored viewed at 20x magnification is categorized into: 0=≤5% cells, +1=6-25 % cells, +2=26-60 % cells, +3=61-100% cells, and the intensity of the colored verticality becomes: 0=negative, +1=weak, +2=medium, +3=strong. The expression from GATA3 is calculated using the following equation: H-score=Pi (i + 1), where I is the intensity of the colored tumor cells (0 to 3+), and Pi is the percentage of tumor cells colored for each intensity. We set the cut-off value at 150%, which corresponds to the H-score. Cases that have a value of 0% are considered negative GATA3 expressions, less than 150% are considered weak GATA3 expressions and those that equal to or exceed 150% are considered strong GATA3 expressions. Taking the average of the percentage of colored cells attenuated to 150%: low expression <150%, and high expression ≥150%.⁷⁴

Data processing will be carried out using the statistical program "Statistical Package for the Social Sciences" (SPSS). The results of data processing are presented in the form of tables. The data in this study were analyzed with univariate analysis to see a frequency distribution that included each of the variables of age group, parity history, contraceptive history, clinical stage, histopathological type, and GATA3 expression. Data analysis in the form of mean, median, range, and standard deviation.

RESULTS

The samples used in this study were 33 samples diagnosed as ovarian carcinoma at the Anatomic Pathology Unit of H. Adam Malik General Hospital Medan in 2019-2021, where these 33 samples met the inclusion and exclusion criteria in this study.

The results of microscopic examination of HE preparations showed that most of the samples had a histopathological type of serous carcinoma ovarian carcinoma 14 cases (42.4%), mucinous carcinoma 6 cases (18.2%), endometrioid carcinoma 7 cases (21.2%), and clear cell carcinoma 6 cases (18.2%). Most GATA3 immunohisto-chemistry expression was based on microscopic characteristics with low expression in 26 cases

ovarian carcinoma (78.8%) and high expression in 7 cases (21.2%).

Table 1. Distribution of ovarian carcinoma samples based on microscopic characteristics of histopathological subtypes of ovarian carcinoma and GATA3 expression.

Characteristic	Sum=n	Percentage (%)
Sum	33	100
Histopathological subtypes		
Serous carcinoma	14	42.4%
Mucinous carcinoma	6	18.2%
Endometrioid carcinoma	7	21.2%
Clear cell carcinoma	6	18.2%
GATA3 expressions		
Expression low	26	78.8
Expression high	7	21.2

Table 2. Distribution of positive GATA3 immunohistochemistry expression based on histopathological subtypes of ovarian carcinoma.

Histopathological subtypes	Sum=n	Presented (%)	GATA3 expressions				Total	n	%
			Expression low	n	%	Expression high			
Serous carcinoma	14	42.4	9	36.6	5	71.4	14	42.5	
Mucinous carcinoma	6	18.2	6	23.1	0	0	6	18.2	
Endometrioid carcinoma	7	21.2	6	23.1	1	14.3	7	21.1	
Clear cell carcinoma	6	18.2	5	19.2	1	14.3	6	18.2	
Total	33	100	26	100	7	100	33	100	

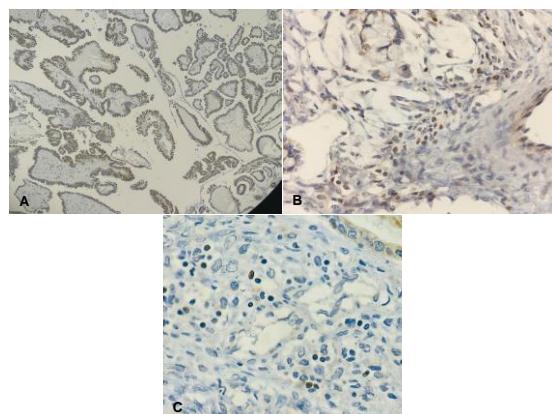


Figure 1. A, B, C. Immunohistochemistry expression GATA3 high expression.

The frequency distribution of GATA3 immunohistochemistry expression based on the histopathological subtype of serous carcinoma ovarian carcinoma was 14 cases (42.4%), mucinous carcinoma was 6 cases (18.2%), endometrioid carcinoma was 7 cases (21.2%), and clear cell carcinoma was 6 cases (18.2%). The results of the GATA3 immunocytochemistry examination showed that low expression majority of samples in the histopathological subtype of serous carcinoma were 9 cases (36.6%), mucinous carcinoma 6 cases (23.1%), endometrioid carcinoma 6 cases (23.1%), and clear cell carcinoma 5 cases (19.2%). The results of the GATA3 immunocytochemistry examination showed high expression in the histopathology subtype

of serous carcinoma 5 cases (71.4,1%), no strong expression was found in mucinous carcinoma, endometrioid carcinoma 1 case (14.3%), and clear cell carcinoma 1 case (14.3%).

DISCUSSION

The immunohistochemistry GATA3 high expression in this study was found to be the most in the serous carcinoma type, which was 42.5% compared to other types. This is in line with the research of El-Arabe et al., where GATA3 is associated with the TP53 mutation in serous carcinoma. It is also supported by the same study by Espinosa et al., Chen et al., and Terzic et al., which states that overexpression of GATA3 using the lentiviral system in the HGSOC OVCAR5 cell line significantly improves expression in high-grade serous carcinoma. Where 6% of ovarian carcinoma expresses GATA3. The most common positive cases encountered are high-grade serous carcinoma with 3+ staining in more than 90% of malignant cells. Strong but less extensive staining is also seen in 2 mucinous adenocarcinomas that are positive in 50% and 20% of cells. In clear cell carcinoma, ovaries have a strong intensity in 30% of cells and weak staining in 20% of cells. However, this study is not in line with the research of Davis et al., and Ordo et al., which showed that serous carcinoma type and other histologic subtypes of ovarian carcinoma that did not have a positive expression of GATA3 were 0%.

However, in this study, GATA3 was also found to have a low expression in mucinous carcinoma (3.1%), where mucinous carcinoma also has a TP53 mutation pathway, which should have GATA3 expression high. In the type of endometrioid carcinoma (3.1%) and clear cell carcinoma (3.1%), there is also a low expression of GATA3 with a minimal amount. So far researchers have not found mutations that are common in all of these subtypes; more research is needed to prove the relationship between GATA3 and these genes. In addition, researchers also suspect that the slight Tp53 mutation in the subtype affects GATA3 low expression.^{60,61,65-67,72,85}

CONCLUSION

The results of the study on a total of 33 samples in this study conducted at the Anatomic Pathology Unit of H. Adam Malik General Hospital Medan, then it can be concluded as follows:

- a. The frequency distribution of characteristics of people with ovarian carcinoma is most prevalent in the age group >50-60 years old (age range 58 years), history of nullipara parity, without a history of contraceptive use, and most in the group of stage III ovarian malignancy.
- b. Based on the histopathology subtypes in this study, the most numerous are the serous carcinoma ovary subtype and GATA3 immunohistochemistry expression, which has a higher expression than the low expression.
- c. GATA3 immunohistochemistry expression with high expression is most commonly displayed in the serous carcinoma ovary histopathology subtype, while low expression in the endometrioid carcinoma ovary and clear cell carcinoma ovary subtypes is only found in 1 case in each subtype.
- d. GATA immunohistochemistry expression will be more widely displayed in the serous carcinoma ovary subtype due to the influence of the Tp53 mutation that occurs in the serous carcinoma ovary.

ACKNOWLEDGMENT

We would like to thank all staff of the Department of Anatomical Pathology, University Sumatera Utara, and the Pathology Unit of the H. Adam Malik Central General Hospital Medan, Indonesia, for all their assistance and cooperation.

ETHICAL APPROVAL

This research has been granted a research permit by the Health Research Ethics Committee of the Universitas Sumatera Utara.

REFERENCES

1. Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, et al., Ovarian cancer statistics, 2018. *CA: A Cancer Journal for Clinicians.* 2018; 68(4):284–96.
2. WHO. Globocan 2020 [Internet]. IARC. 2020;419:3–4. Available from: <https://gco.iarc.fr/today/data/factsheets/cancers/25-Ovary-fact-sheet.pdf>
3. WHO. Global Cancer Observatory Indonesia [Internet]. IARC. 2018. Available from: <https://gco.iarc.fr/today/data/factsheets/populations/360-indonesia-fact-sheets.pdf>
4. Cheung AN, McCluggage WG, Kong CS, Longacre TA, Malpica A, Soslow RA, et al., Tumours of the ovary. WHO Classification of Female Genital Tumours. 5th Ed. Lyon: IARC; 2020. pp. 32–67.
5. Shaco R, Robboy SJ. Normal ovaries, inflammatory and non-neoplastic conditions. In: Mutter GL, Prat J, editors. *Pathology of The Female Reproductive Tract.* 3rd ed. Philadelphia: Elsevier; 2014. pp. 509-14.
6. Seidman JD, Ronnett BM, Shih IM, Cho KR, Kurman RJ. *Epithelial Tumors of the Ovary.* In: Kurman RJ, Ellenson LH, Ronnett BM, editors. *Blaustein's Pathology of the Female Genital Tract.* 7th ed. Switzerland: Springer; 2019. pp. 842-46, 872. https://doi.org/10.1007/978-3-319-46334-6_14
7. Lino-Silva LS. Ovarian carcinoma: pathology review with an emphasis in their molecular characteristics. *Chin Clin Oncol* 2020 | <http://dx.doi.org/10.21037/cco-20-31>.
8. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. *Cell* [Internet]. 2011;144:646-74. Available from: <http://dx.doi.org/10.1016/j.cell.2011.02.013>.
9. Zhou Q, Yang H-J, Zuo M-Z and Tao Y-L. Distinct expression and prognostic values of GATA transcription factor family in human ovarian cancer. *Journal of Ovarian Research* (2022) <https://doi.org/10.1186/s13048-022-00974-6>.

10. Yusuf D, Butland SL, Swanson MI, Bolotin E, Ticoll A, Cheung WA, et al.,. The Transcription Factor Encyclopedia. *Genome Biology* 2012, 13:R24 : p 2-25. <http://genomebiology.com/2012/13/3/R24>
11. Gilks B. Ovary. In: Goldblum JR, Lamps LW, McKenney JK, Myers JL, editors. *Rosai & Ackerman's Surgical Pathology*.11th ed. Philadelphia: Elsevier Inc; 2018. p.1367.
12. Pulsen F, Waschke J. *Sobotta: Innervation of female Genitalia* 16th ed. Munich,Germany: Elsevier; 2018 pp;303
13. Kumar V, Abbas AK, Aster JC. *Tumors of The Ovary*. In: *Robbins Basic Pathology*. 10th ed. Philadelphia: Elsevier Inc.; 2018. pp. 727-9.
14. Martini FH, Nath JL, Bartholomew EF. *The Reproductive System. Fundamentals of Anatomy & Physiology*.11th ed. New York: Pearson; 2018. pp. 1073-4.
15. Mescher AL. *The Female Reproductive System. Junquiera's Basic Histology Text and Atlas*. 14th Ed. New York: McGraw Hill Education; 2016. pp. 460- 6.
16. Eroschenko VP. *Ovary and Uterus-An overview. diFiore's Atlas of Histology with Functional Correlations*. 12th ed. Baltimore: Lippincott William & Wilkins; 2013. pp. 508-12.
17. Garg K, Zaloudek C. *Tumors of the Female Genital Tract*. In: Fletcher CDM, editor. *Diagnostic Histopathology of Tumors*. 5th ed. Philadelphia: Elsevier; 2021. pp. 702-3.
18. Shisheboran MD, Genestie C. *Pathobiology of Ovarian Carcinoma*. *Chinese Journal of Cancer*. 2015;34(1).
19. Webb PM, Jordan SJ. *Epidemiology of epithelial ovarian cancer*. *Best Pract Res Clin Obstet Gynaecol* [Internet]. 2017;41(2017):3–14. Available from: <http://dx.doi.org/10.1016/j.bpobgyn.2016.08.006>
20. Lheureux S, Gourley C, Vergote I, Oza AM. *Epithelial ovarian cancer*. *Lancet* [Internet]. 2019;393(10177):1240–53. Available from: [http://dx.doi.org/10.1016/S0140-6736\(18\)32552-2](http://dx.doi.org/10.1016/S0140-6736(18)32552-2).
21. Krzystyniak J, Ceppi L, Dizon DS, Birrer MJ. *Epithelial ovarian cancer: the molecular genetics of epithelial ovarian cancer*. *Annals of Oncology* [Internet]. 2016;27(1):i4-i10. Available from: <http://dx.doi.org/10.1093/annonc/mdw083>.
22. Wentzensen N, Poole EM, Trabert B, White E, Arslan AA, Patel AV, et al.,. *Ovarian cancer risk factors by histologic subtype: An analysis from the ovarian cancer cohort consortium*. *Journal of Clinical Oncology* [Internet]. 2016;34(24). Available from <http://dx.doi.org/10.1200/JCO.2016.66.8178>.
23. Ginting K. *Quality of Life of Ovarian Cancer Survivors at RSUP Haji Adam Malik Medan* [student paper]. Medan: University of North Sumatra; 2019. Available from: <http://repositori.usu.ac.id/handle/123456789/26163>.
24. Netter FH. *Uterus and Adnexa*. In: Machado CAG, Hansen JT, Benninger B, Brueckner-
25. Shih I, Wang Y, Wang T. *The origin of ovarian cancer species and precancerous Landscape*. *American Journal of Pathology* [Internet]. 2020;192(1):26-39.
26. Slomovitz B, Gourley C, Carey MS, Malpica A, Shih I-M, Huntsman D, et al.,. *Low-grade serous ovarian cancer: State of the science*, *Gynecologic Oncology*, <https://doi.org/10.1016/j.ygyno.2019.12.033>: pp 11-1.
27. Hunter SM, Anglesio MS, Ryland GL. *Molecular profiling of low grade serous ovarian tumours identifies novel candidate driver genes*. *Oncotarget*.2015;6(35):37663-77.
28. Leo AD, Santini D, Ceccarelli C, Santandrea G, Palicelli A, Acquaviva G, et al.,. *Review What Is New on Ovarian Carcinoma: Integrated Morphologic and Molecular Analysis Following the New 2020 World Health Organization Classification of Female Genital Tumors*. *Diagnostics* 2021, 11, 697. <https://doi.org/10.3390/diagnostics11040697>.
29. Ricciardi E, Baert T, Ataseven B, Heitz F, Prader S, Bommert M, et al.,. *Low-grade Serous Ovarian Carcinoma*. <https://doi.org/10.1055/a-0717-5411> *Geburtsh Frauenheilk* 2018; 78: 972–976
30. Kobel M, Piskorz AM, Lee S, Lui S, LePage C, Marass F, et al.,. *Optimized p53 immunohistochemistry is an accurate predictor of TP53 mutation in ovarian carcinoma*. *J Pathol Clin Res*. 2016;2(4):247-58.
31. Ahn G, Folkins AK, McKenney JK. *Low grade serous carcinoma of the ovary: clinicopathologic analysis of 52 invasive cases and identification of a possible noninvasive intermediate lesion*. *Am J Surg Pathol*. 2016;40(9):1165-76.

32. Miettinen M, Mc. Cue PA, Sarlomo-Rikala M, Rys J, Czapiewski P, Wazny K, et al., GATA 3 – A Multispecific But Potentially Useful Marker In Surgical Pathology – A Systematic Analysis Of 2500 Epithelial And Non-Epithelial Tumors. *Am J Surg Pathol.* 2014 January ; 38(1): 13–22. doi:10.1097/PAS.0b013e3182a0218f.

33. Hsiang-Ju C, Rui-Lan H, Phui-Ly L, Po-Hsuan S, Lin-Yu C, Yu-Chun W, et al., GATA3 as a master regulator and therapeutic target in ovarian high-grade serous carcinoma. doi: 10.1002/ijc.31750 : p 1-42.

34. Fundamentals of Anatomy & Physiology.11th ed. New York: Pearson; 2018. pp. 1073-4.

35. Altman AD, Nelson GS, Ghatare P. The diagnostic utility of TP53 and CDKN2A to distinguish ovarian high grade serous carcinoma from low grade serous ovarian tumors. *Mod. Pathol.* 2013;26(9):1255-63.

36. Peres LC, Cushing-Haugen KL, Anglesio M, Wicklund K, Bentley R, Berchuck A, et al.,. Histotype classification of ovarian carcinoma: a comparison of approaches. *Gynecol Oncol.*2018;151(1):53-60.

37. Jones MR, Kamara D, Karlan BY. Genetic epidemiology of ovarian cancer and prospects for polygenic risk prediction. *Gynecol Oncol.* 2017;147(3):705-13.

38. Cancer Genome Atlas Research Network. Integrated genomic analysis of ovarian carcinoma. *Nature.* 2011;474(7353):609-15.

39. Lisio M-A, Fu L, Goyeneche A, Gao Z-H and Telleria C. High-Grade Serous Ovarian Cancer: Basic Sciences, Clinical and Therapeutic Standpoints. *Int. J. Mol. Sci.* 2019, 20, 952; doi:10.3390/ijms20040952. P 33-1.

40. Cohen PA, Powell A, Bohm S, Gilks C B, Stewart CJR, Meniawy TM, et al.,. Chemotherapy response score is prognostic in tubo-ovarian high grade serous carcinoma: A systematic review and meta analysis of individual patient data. *Gynecol Oncol.* 2019;154(2):441-8.

41. Sung PL, Chang YH, Chao KC, Chuang CM. Global distribution pattern of histological subtypes of epithelial ovarian cancer: a database analysis and systemic review. *Gynecol Oncol.* 2014;133(2):147-54.

42. Cheasley D, Wakefield MJ, Ryland GL, Allan PE, Alsop K, Kaushalya C, et al.,. The molecular origin and taxonomy of mucinous ovarian carcinoma. *Nat Commun.* 2019;10(1):3935.

43. Meagher NS, Wang L, Rambau PF. A combination of the immunohistochemistry markers CK7 and SATB2 is highly sensitive and specific for distinguishing primary ovarian mucinous tumors from colorectal and appendiceal metastases. *Mod Pathol.* 2019;32(12):1834-46.

44. Parra-Herran C, Lemer-Ellis J, Xu B. Molecular based classification algorithm for endometrial carcinoma categorizes ovarian endometrioid carcinoma into prognostically significant groups. *Mod Pathol.* 2017;30(12):1748-59.

45. Taylor J, McCluggage WG. Ovarian seromucinous carcinoma: report of a series of a newly categorized and uncommon neoplasm. *Am J Surg Pathol.* 2015;39(7):983-92.

46. Kobel M, Rahimi K, Rambau PF, Naugler C, LePage C, Meunier L, et al.,. An immunohistochemical algorithm for ovarian carcinoma typing. *Int J Gynecol Pathol.* 2016;35(5):430-41.

47. Noe M, Ayhan A, Wang TL. Independent development of endometrial epithelium and stroma within the same endometriosis. *J Pathol.* 2018;245(3):265-9.

48. Bennett JA, Morales-Oyarvide V, Campbell S. Mismatch repair protein expression in clear cell carcinoma of the ovary: incidence and morphologic associations in 109 cases. *Am J Surg Pathol.* 2016;40(5):656-63.

49. Haque S, Morris JC. Transforming growth factor-beta: A therapeutic target for cancer. *Hum. Vaccines Immunother.* 2017;13:1741–50.

50. A.Sarkar, K. Hochedlinger, The sox family of transcription factors: versatile regulators of stem and progenitor cell fate, *Cell Stem Cell* 12 (1) (2013) 15–30, <https://doi.org/10.1016/j.stem.2012.12.007>.

51. Li M, Qi Y, Chen M, Wang Z, Zeng D, Xiao Y, et al.,. GATA Binding Protein 3 Boosts Extracellular ATP Hydrolysis and Inhibits Metastasis of Breast Cancer by Up-regulating Ectonucleoside Triphosphate Diphosphohydrolase 3. *International Journal of Biological Sciences* 2019; 15(12): 2522-2537. doi: 10.7150/ijbs.35563.

52. Lim D, Ip OO, Cheung AN. Immunohistochemical comparison of ovarian and uterine endometrioid carcinoma, endometrioid carcinoma with

clear cell change, and clear cell carcinoma. *Am J Surg Pathol.* 2015;39(8):1061-9.

53. Fadare O, Parkash V. Pathology of Endometrioid and Clear Cell Carcinoma of the Ovary. <https://doi.org/10.1016/j.path.2019.01.009> 1875-9181/19/2019 Elsevier Inc. *Surgical Pathology* 12 (2019) 529–564.

54. Brierley JD, Gospodarowicz MK, Wittekind C, editors. *TNM Classification of malignant tumours*. 8th ed. Oxford, UK: Wiley-Blackwell;2017.

55. Babu MM, Luscombe NM, Aravind L, Gerstein M, Teichmann SA (June 2004). "Structure and evolution of transcriptional regulatory networks" (PDF). *Current Opinion in Structural Biology.* 14 (3): 283–91. doi:10.1016/j.sbi.2004.05.004. PMID 15193307.

56. Dahm R. Friedrich Miescher and the discovery of DNA 2004: DB 278 (2005) 274 – 288.

57. Griffiths AJF, Miller JH, Suzuki DT, Lewontin RC, Gelbart WM. *Transcription and RNA polymerase*. ISBN 0-7167-3520-2.

58. El-Arabey AA, Abdalla M, Abd-Allah AR. GATA3 and stemness of high-grade serous ovarian carcinoma: novel hope for the deadliest type of ovarian cancer. *Japan Human Cell Society* 2020: p 1-3<https://doi.org/10.1007/s13577-020-00368-0>.

59. Chen, Bates DL, Dey R, Chen P-H, Machado ACD, Laird-Offringa IA, et al., DNA Binding by GATA Transcription Factor Suggests Mechanisms of DNA Looping and Long-Range Gene Regulation Yongheng. *Cell Reports* 2, 2012: p 1197–1206; <http://dx.doi.org/10.1016/j.celrep.2012.10.012>

60. Terzic T, Mills AM, Zadeh S, Atkins KA, Hanley KZ. GATA3 Expression in Common Gynecologic Carcinomas: A Potential Pitfall. *International Journal of Gynecological Pathology*(2018): p 1–8. DOI: 10.1097/PGP.0000000000000054.

61. Guo Y, Yu P, Liu Z, Maimaiti Y, Chen C, Zhang Y, et al., Prognostic and clinicopathological value of GATA binding protein 3 in breast cancer: A systematic review and meta-analysis. 2017: p 1-12. <https://doi.org/10.1371/journal.pone.0174843>

62. Chou J, Provost S, Werb Z, Gata3 In Development and Cancer Differentiation: Cells GATA Have It. *Journal Of Cellular Physiology* 2009: p 1-8.

63. El-Arabey AA, Abdalla M, Abd-Allah AR. GATA3 and stemness of high-grade serous ovarian carcinoma: novel hope for the deadliest type of ovarian cancer. *Japan Human Cell Society* 2020: p 1-3<https://doi.org/10.1007/s13577-020-00368-0>.

64. El-Arabey AA, Denizli M, Kanlikilicer P, Bayraktara R, Ivana C, Rasheda M, et al., GATA3 as a master regulator for interactions of tumor-associated macrophages with high-grade serous ovarian carcinoma. *Cellular Signalling* 68 (2020): p 1-25. www.elsevier.com/locate/cellsig.

65. El-Arabey AA, Denizli M, Kanlikilicer P, Bayraktar R, Ivan C, Rashed M, et al., GATA3 as a master regulator for interactions of tumor-associated macrophages with high-grade serous ovarian carcinoma, *Cellular Signalling*. 2020, <https://doi.org/10.1016/j.cellsig.2020.109539>.

66. Davis DG, Siddiqui MT, Oprea-Ilies G, Steven K, Osunkoya AO, et al., GATA-3 and FOXA1 expression is useful to differentiate breast carcinoma from other carcinomas 2016 Jan; 47(1):26-31. doi: 10.1016/j.humpath.2015.09.015. Epub 2015 30 September.

67. Qi Y, Mo K, Zhang T. A transcription factor that promotes proliferation, migration, invasion, and epithelial–mesenchymal transition of ovarian cancer cells and its possible mechanisms. *BioMed* (2021) 20:83 <https://doi.org/10.1186/s12938-021-00919-y>.

68. Lin H-Y, Liang Y-K, Dou X-W, Chen C-F, Wei X-L, Zeng D, et al., Notch3 inhibits epithelial–mesenchymal transition in breast cancer via a novel mechanism, upregulation of GATA-3 expression. *Oncogenesis* (2018)7:59. DOI 10.1038/s41389-018-0069-z.

69. Zaidan N, Ottersbach K. 2018 The multi-faceted role of Gata3 in developmental haematopoiesis. *Open Biol.* 8: 180152. <http://dx.doi.org/10.1098/rsob.180152>

70. Zheng R, Blobel GA. GATA Transcription Factors and Cancer. 2011: *Genes & Cancer* 1(12) 1178–1188. DOI: 10.1177/1947601911404223.

71. Ordon NG, Value of GATA3 Immunostaining in Tumor Diagnosis: A Review. *Adv Anat Pathol* 2013;20:352–360.

72. Ho I-C, Tai T-S, Pai S-Y. GATA3 and the T-cell lineage: essential functions before and after T-helper-2-cell differentiation. Volume 9, 2009: p 1-11 www.nature.com/reviews/immunol.

73. Oosterwegel M, Timmerman J, Leiden J, Clevers H. Expression of GATA-3 during lymphocyte differentiation and mouse embryogenesis 1992;3(1):1-11. doi: 10.1155/1992/27903.

74. Fararjeh A-F S, Tu S-H, Chen L-C, Liu Y-R, Lin Y-K, Chang H-L, et al.,. The impact of the effectiveness of GATA3 as a prognostic factor in breast cancer. *Human Pathology* (2018) 80, 219–230. <https://doi.org/10.1016/j.humpath.2018.06.004>.

75. Thermofisher scientific . invitrogen GATA3 Monoclonal Antibody (1A12- 1D9) <https://www.thermofisher.com/antibody/product/GATA3-Antibody-clone-1A12-1D9-Monoclonal/MA1-028>

76. Michels J, Genestie C, Dunant A, Caron O, Lanoy E, Colomba E, et al.,. Impact of young age on platinum response in women with epithelial ovarian cancer: Results of a large single-institution registry. 2021, Pages 77-82. <https://doi.org/10.1016/j.ygyno.2020.09.050>

77. Stewart C, Ralyea C, Lockwood S. Ovarian Cancer: An Integrated Review. 2019, Pages 151-156 [10.1016/j.soncn.2019.02.001](https://doi.org/10.1016/j.soncn.2019.02.001)

78. Azizah F, Mulawardhana P, Sandhika W. Original article Association of age at menarche, parity, and hormonal contraceptive use with the histologic type of ovarian cancer. V29I32021.118-123 doi:<http://dx.doi.org/10.20473/moq.V25I12017.6-9>

79. Dewi LISL, Surya IGNHW, Darmayasa IM, Putra IGM. Characteristics of ovarian cyst patients at sanglah hospital denpasar for the period of January 2019 - December 2019. [doi:10.24843.MU.2021.V11.i11.P12](https://doi.org/10.24843.MU.2021.V11.i11.P12)

80. Said SA, Bretveld WR, Koffijberg H, Sonke GS, Kruitwagen RFP, de Hullu JA , et al.,. Clinicopathologic predictors of early relapse in advanced epithelial ovarian cancer: development of prediction models using nationwide data. <https://doi.org/10.1016/j.canep.2021.102008>

81. Gaona-Luviano P, Medina-Gaona LA, Magaña-Pérez K. Epidemiology of ovarian cancer Department of Surgery, Section of Gynecology, National Institute of Medical Sciences and Nutrition “Salvador Zubirán”, Mexico City, Mexico. *Chin Clin Oncol* 2020;9(4):47 | <http://dx.doi.org/10.21037/cco-20-34>

82. Wu YN-Y, Fang C, Huang H-S, Wang J, Chu T-Y. Natural history of ovarian high-grade serous carcinoma from time effects of ovulation inhibition and progesterone clearance of p53-defective lesions. *Modern Pathology* (2020) 33:29–37 <https://doi.org/10.1038/s41379-019-0370-1>

83. Momenimovahed Z, Tiznobaik A, Taheri S, Salehiniya H. Ovarian cancer in the world: epidemiology and risk factors. *JOW Health* 2019:11 287–299. doi: [10.2147/IJWH.S197604](https://doi.org/10.2147/IJWH.S197604)

84. Espinosa I, Gallardo A, D'Angelo E, Mozos A, Lerma E, Prat J, Original Article Simultaneous Carcinomas of the Breast and Ovary: Utility of Pax-8, WT-1, and GATA3 for Distinguishing Independent Primary Tumors from Metastases. *International Journal of Gynecological Pathology* 34:257–265. DOI: 10.1097/PGP.0000000000000155

85. Yang S, Su H, Chen X, Hua L, Chen J, Hu M, Lei J, Wu S, Zhou J. Long-Term Survival Among Histological Subtypes in Advanced Epithelial Ovarian Cancer: Population-Based Study Using the Surveillance, Epidemiology, and End Results Database. *JMIR Public Health Surveill* 2021;7(11):e2597 URL: <https://publichealth.jmir.org/2021/11/e25976> DOI: 10.2196/25976