

Correlation between GATA3 and TP53 Expression as a Prognostic Predictor of Ovarian Carcinoma Subtypes.

Intan Nefia Alamanda, Betty, Delyuzar, Jessy Chrestella, Soekimin
Departement of Anathomical Pathology, Faculty of Medicine, Universitas Sumatera Utara
Medan, Indonesia
Jl. Universitas No.1, Medan 20155

Correspondence author: Intan Nefia Alamanda
Departemen Patologi Anatomi, Fakultas Kedokteran, Universitas Sumatera Utara Medan,
Indonesia
Jl. Universitas No.1, Medan 20155.
e-mail: nefiaintan@gmail.com

Received : 13-03-2024

Accepted : 14-05-2024

Published: 31-05-2025

ABSTRACT

Background

Ovarian carcinoma is a cancer with high mortality in women, although comprehensive treatment with surgery and chemotherapy is at an advanced stage, survival rates are still low. GATA3 and p53 are predictors of some malignancies, but results vary in ovarian carcinoma.

Objective

To examine correlation between immunohistochemical expression of GATA3 and p53 in patients with ovarian carcinoma with various histopathological subtypes.

Methods

Cross sectional design is the method of this study conducted on slides of 28 ovarian carcinoma patients in several subtypes of hitopathology. Each slide was stained with hematoxylin and eosin (H&E) to assesses hitopathological subtypes and stained with GATA3 and p53 antibodies. Expression GATA3 was assessed using H-score and p53 quick score. A logistic regression assay ($p<0.005$) was used to assessed the association of GATA3 and TP53 immunohistochemical expression in several histopathological subtypes of ovarian carcinoma. Statistical analysis between GATA3 and p53 was performed using the eta correlation test is used because the data is nominal-ordinal.

Results

Among 28 specimens in patients with ovarian carcinoma, Cases was most prevalent in the age group >50-60 years old (age range 58 years old), history of nullipara parity, and most in the group of stage III ovarian malignancy. Positive immunohistochemical p53 expression is more prevalent in serous carcinoma. Positive GATA3 immunohistochemical expression is more prevalent in serous carcinoma.

Conclusion

There is no significant relationship. Immunohistochemical expression of GATA3 and TP53 in some histopathological subtypes of ovarian carcinoma. However, immunohistochemical expression of GATA3 high p53 positive tends to be found in high-grade serous carcinoma.

Keywords: GATA3, TP53, ovarian carcinoma subtypes

INTRODUCTION

Ovarian cancer is the second most common malignancy after breast cancer. The Global Burden of Cancer (GLOBOCAN) in 2020 stated that ovarian cancer ranks 8th most cancers in women worldwide with 313,959 new cases and an ovarian cancer death rate of 207,252. The incidence of ovarian cancer in Indonesia in 2020 ranks 10th, with 14,896 new cases and 9,581 deaths from ovarian cancer. Most common cancer in women worldwide, the mortality rate is quite high, most patients present at stage III so the prognosis is poor. Ovarian carcinoma (more than 70%) is more often diagnosed at an advanced stage of stage III or IV based on stage FIGO because there are still few effective screening strategies at an early stage and the early symptoms of carcinoma are not specific. The various subtypes, they have different behavior and genetic.¹⁻⁴ This study aims to determine the relationship between immunohistochemical expression of GATA3 and P53 in several histopathological subtypes of ovarian carcinoma.

The most common histological picture of ovarian carcinoma is the high-grade serous carcinoma type. Other histological types of ovarian carcinoma are: low-grade serous carcinoma, mucinous adenocarcinoma, endometrioid adenocarcinoma, seromusinous carcinoma, clear cell adenocarcinoma, malignant Brenner tumor carcinosarcoma, and mixed cell adenocarcinoma. The morphology of the entity has a different etiology with the genetic characteristics, phenotype and behavior of the tumor and includes response to chemotherapy.⁴⁻⁷

Various markers have been used to predict behavior and prognosis in various subtypes of ovarian carcinoma, but the results research about the correlation between GATA3 and p53 on ovarian carcinoma, there is not much. Recent research Elarabey *et al*. Which did not find a significant relationship in previous studies regarding the relationship between GATA3 and p53 in high-grade serous ovarian carcinoma.⁷

GATA3 is a derivative of the GATA transcription factor located on chromosome 10p14 is one of the 6 transcription factors in the DNA sequence that functions to regulate the differentiation process during embryogenic development. In ovarian carcinoma, GATA3 acts as an oncogenic protein related to TP53 which functions to stimulate apoptosis. GAT3 expression is associated with a poor prognosis in ovarian carcinoma.¹⁰

The tumor suppressor gene P53 is an important biological molecule in the human body as a guardian of genome integrity, and to ensure cell homeostasis runs properly. TP53 is encoded by the p53 gene located on the short arm of chromosome 17p13.1 and composed by 393 amino acids. The biological function of p53 protein is as a multitarget gene transcription factor, cell cycle regulation, cell aging, apoptosis, DNA synthesis, repair of DNA damage caused by genotoxic material, angiogenesis and oxidative stress. This protein plays an important role in preventing tumors by stopping the cell cycle or programming cell death in response to DNA damage. Due to damage and disruption of p53 function, uncontrolled cell division occurs, resulting in ovarian carcinoma.⁸⁰

In ovarian carcinoma, GATA3 acts as an oncogenic protein related to TP53, which functions to stimulate apoptosis. If GATA3 is strongly expressed in ovarian carcinoma, it will interfere with the work of TP53, resulting in resistance to apoptosis. If GATA3 is strongly expressed in ovarian carcinoma, it will interfere with the work of TP53 so that resistance to apoptosis occurs.¹⁰

METHODS

This research is an analytical study with a cross sectional approach. The research was conducted at the Department of PA FK USU from December 2022 to November 2023. The samples in this study were paraffin blocks and slides from operating tissue diagnosed histopathologically as ovarian carcinoma that met the inclusion (Age, stage, subtype slide review ovarian carcinoma) and exclusion criteria at the Anatomic Pathology Unit of RSUP Haji Adam Malik Medan 2019-2021 as a research sample.

Immunohistochemical expression of GATA3 (monoclonal antibody, primary mouse clone L50-823) identified by the presence of stained brownish granules in the nucleus of tumor cells using Olympus CX23 microscope with 20x magnification. This expression is determined by assessing the colored area and categorized into: 0=<5% cells, +1=<6-25% cells, +2=26-60% cells, +3=61-100% cells; and the intensity of the stained is grouped into: 0=negative, +1=weak, +2=medium, +3=strong. Then, the H-score formula will be used which is calculated using the following equation: H-score=Pi (i+1), where i is the intensity of the tumor stained (0 to 3+), and Pi is the percentage of tumor cells stained for each intensity. The cut-off value is set as 150%,

which is the H-score. Cases that have a value of 0% are considered negative GATA3 expressions; when less than 150% is considered a GATA3 low expression and when the value equals or exceeds 150% is considered a GATA3 high expression.⁷⁹ Therefore, the assessment of GATA3 expression in this study can be categorized into: <150% = low expression, ≥150% = high expression.⁷⁹

Immunohistochemical expression of p53 antibody (DO-7): sc-47698 (monoclonal antibody) The degree of expression of p53 staining is seen from the percentage of colored cell groups and the intensity of staining. The percentage is obtained from the results of positive cell summation in the entire field of view of tumor preparations examined using a light microscope. Currently, there is no standard scoring system, but based on various references, the scoring system commonly used is a score of 0 if there are no colored cells or there are no immunoreactive cells; score 1 if positive cells amount to <10%; score 2 if positive cells are between 10-50%; and score 3 if positive cells are >50%. The next scoring result is interpreted as follows: negative = when the score is 0 or 1, positive = when the score is 2 or 3.⁸⁰

RESULT

Based on clinical data on medical records/anatomical pathology archives, in this study the distribution of ovarian carcinoma samples found the youngest age in this study was 18 years old and the oldest was 76 years old, and the most group was found at the age of >50-60 years old as many as 12 cases (42.9%).

The history of parity was more prevalent in the number of nullipara groups as many as 14 cases (50.0%), multiparous as many as 14 cases (50.0%). The most stages obtained in this study in stage III were 14 cases (50.0%), followed by stage I as many as 8 cases (28.6%), stage II as many as 4 cases (14.3%), and the least was stage IV as many as 2 cases (7.1%).

Table 1. Table of frequency distribution characteristics of ovarian carcinoma patients by age group, parity history, clinical stage and histopathological subtype of ovarian carcinoma.

Variable	f	%
Age (Mean±sd; median; min-max)	(45.86±14.5; 50.5; 18-76)	
Age		
≤20 years old	2	7.1
>20-30 years old	4	14.3
>30-40 years old	2	7.1
>40-50 years old	6	21.4
>50-60 years old	12	42.9
>60 years old	2	7.1
Paritas		
Nulipara	14	50.0
Primipara	0	0.0
Multipara	14	50.0
Stadium		
Stadium I	8	28.6
Stadium II	4	14.3
Stadium III	14	50.0
Stadium IV	2	7.1
Histopathology Subtypes		
Serous carcinoma	12	42.9
Mucinous carcinoma	5	17.9
Endometrioid carcinoma	6	21.4
Clear cell carcinoma	5	17.9
GATA3 Expression		
Low Expression	23	82.1
High Expression	5	17.9
Expression P53		
Negative	6	21.4
Positive	22	78.6

Table 2. Table of Eta Correlation Test on p53 expression against several carcinoma of ovary subtypes.

Variable	Expression p53		Total f (%)	value	p*
	Negative f (%)	Positive f (%)			
Subtype					
Serous carcinoma	0 (0.0)	12 (42.9)	12 (42.9)		
Mucinous carcinoma	2 (7.1)	3 (10.7)	5 (17.9)	0.508	>0.05
Endometrioid carcinoma	3 (10.7)	3 (10.7)	6 (21.4)		
Clear cell carcinoma	1 (3.6)	4 (14.3)	5 (17.9)		
Total	6 (21.4)	22 (78.6)	28 (100.0)		

*)The Eta correlation test is used because of nominal-ordinal data. The test results found no significant correlation between P53 expression and the histopathological subtype of ovarian carcinoma.

P53 expression in several histological subtypes of ovarian carcinoma found negative p53 expression as many as 6 cases (21.4%) and positive p53 expression as many as 22 cases (78.6%). To calculate the significance of p53 expression against several subtypes of carcinoma of ovary used the Eta test, the

results of the calculation, namely: 1). Have a relationship if $F_{calculate} > F_{table}$. 2). Have no significant relationship when $F_{calculate} < F_{table}$. Conclusion of the analysis: There was no significant association between P53 expression and histopathological subtypes of ovarian carcinoma ($F_{count} < F_{table}$; $2.78 < 3.01$).

Table 3. Table of Etap Correlation Test on GATA3 expression against several subtypes of carcinoma of ovary.

Variable	GATA3 Expression		Total f (%)	value	p*
	Low Expression f (%)	High Expression f (%)			
Subtype					
Serous carcinoma	9 (32.1)	3 (10.7)	12 (42.9)	0.233	>0.05
Mucinous carcinoma	5 (17.9)	0 (0.0)	5 (17.9)		
Endometrioid carcinoma	5 (17.9)	1 (3.6)	6 (21.4)		
Clear cell carcinoma	4 (14.3)	1 (3.6)	5 (17.9)		
Total	23 (82.1)	5 (17.9)	28 (100.0)		

*) The Eta correlation test is used because of nominal-ordinal data. The test results found no significant correlation between GATA3 expression and the histopathological subtype of ovarian carcinoma.

GATA3 expression in several histological subtypes of ovarian carcinoma found 23 cases (82.1%) and 5 cases of high expression GATA3 (17.9%). The results of the above calculations are: 1). Have a relationship if Fcalculate>Ftable. 2). Have no significant relationship if Fcalculate<Ftable Conclusion of the analysis: There was no significant relationship between GATA3 expression and the histopathological subtype of ovarian carcinoma (Fcalculate<Ftable; 0.46<3.01).

Table 4. GATA3 Expression Logistic Regression Test Table, P53 Expression with Ovarian Carcinoma Histopathology Subtype.

Variable	Expression	Say	p	0.010
Subtype				
Serous carcinoma	GATA3	Low	0.990	
	p53	High		
		Negative		
		Positive	-	
Mucinous carcinoma	GATA3	Low	0.993	
	p53	High		
		Negative		
		Positive	0.992	
Endometrioid carcinoma	GATA3	Low	0.992	
	p53	High		
		Negative		
		Positive	0.992	
Clear cell carcinoma	GATA3	Low	0.994	
	p53	High		
		Negative		
		Positive	-	

After analysis with logistic regression tests, it was found that there was no statistically significant relationship between GATA3 and each subtype of ovarian carcinoma histopathology did not show a significant relationship, nor did the correlation between P53 and each subtype of ovarian carcinoma histopathology show no significant relationship.

DISCUSSION

Ovarian carcinoma is a malignancy of gynecological origin which is the cause of most deaths in women in the world in this study based on age obtained the average age of carcinoma samples with the largest age group is ≥ 50 years old (49.2%). This is in line with Luviano et al and Momenimovahed et al stating that the incidence of ovarian cancer varies in different age groups and races. Patients with ovarian carcinoma have a wide age range and are mostly found in women over 40 years old (perimenopausal age) and postmenopause, and the risk increases with increasing age and length of ovulation.^{23,27}

Ovarian carcinoma is a group of tumors that have various subtypes with various differences in morphology, molecular biology/genomics, pathogenesis, and cell behavior. In this study, the most common type of serous carcinoma was obtained as many as 12 samples (42.9%). This is in line with the research of Peres et al and Waruwu research where obtained high grade serous carcinoma type is the most common type, and mucinous carcinoma type is the least found in Waruwu research, while in Peres et al.^{46,47} One factor that causes this difference is the geographical difference in which Peres et al. conducting research in America, as well as based on literature it is said that serous types are found in America and Europe.⁷

Certain tumors in some ovarian carcinomas are deprived of GATA3, which is associated with a poor prognosis. In ovarian carcinoma, GATA3 acts as an oncogenic protein related to TP53, which serves to stimulate apoptosis. If GATA3 is strongly expressed in ovarian carcinoma, it will interfere with the work of TP53 so that resistance to apoptosis will occur.²² This study illustrates no significant association between GATA3 and TP53 in serous ovary carcinoma. This study is in line with El-Arabe et al, it shows GATA3

rarely mutates in OC and these mutations trigger tumor growth.^{73,79,81}

Ovarian carcinoma is a malignancy of gynecological origin which is the cause of most deaths in women in the world in this study based on age obtained the average age of carcinoma samples with the largest age group is ≥ 50 years old (49.2%). This is in line with Luviano et al and Momenimovahed et al. stating that the incidence of ovarian cancer varies in different age groups and races. Patients with ovarian carcinoma have a wide age range and are mostly found in women over 40 years old (perimenopausal age) and postmenopause, and the risk increases with increasing age and length of ovulation.^{23,27}

Ovarian carcinoma is a group of tumors that have various subtypes with various differences in morphology, molecular biology / genomics, pathogenesis, and cell behavior. In this study, One factor that causes this difference is the geographical difference in which Peres et al conducting research in America, as well as based on literature it is said that serous types are found in America and Europe.⁷

Certain tumors in some ovarian carcinomas are deprived of GATA3, which is associated with a poor prognosis. In ovarian carcinoma, GATA3 acts as an oncogenic protein related to TP53, which serves to stimulate apoptosis. If GATA3 is strongly

expressed in ovarian carcinoma, it will interfere with the work of TP53 so that resistance to apoptosis will occur.²² This study illustrates no significant association between GATA3 and TP53 in serous ovary carcinoma. This study is in line with El-Arabe et al, it shows GATA3 rarely mutates in OC and these mutations trigger tumor growth.^{73,79,81}

CONCLUSION

After a study of 28 ovarian carcinoma samples aimed to see the relationship between GATA3 expression and TP53 expression in several subtypes of ovarian carcinoma. In patients with ovarian carcinoma at the Anatomic Pathology Unit of RSUP H. Adam Malik Medan, it can be concluded as follows: The frequency distribution of ovarian carcinoma characteristics is most common in the age group $> 50-60$ years old (age range 58 years old), history of nulliparity parity, and most in the group of stage III ovarian malignancy. Positive immunohistochemical p53 expression is more prevalent in serous carcinoma. Positive GATA3 immunohistochemical expression is more prevalent in serous carcinoma. Immunohistochemical expression of GATA3 and TP53 in several histopathological subtypes of ovarian carcinoma was not significantly associated. however, high immunohistochemical expression of high p53 positive GATA3 tends to be found in high-grade serous carcinoma.

Table 5. GATA3 immunohistochemical expression and P53 immunohistochemical expression with Ovarian Carcinoma

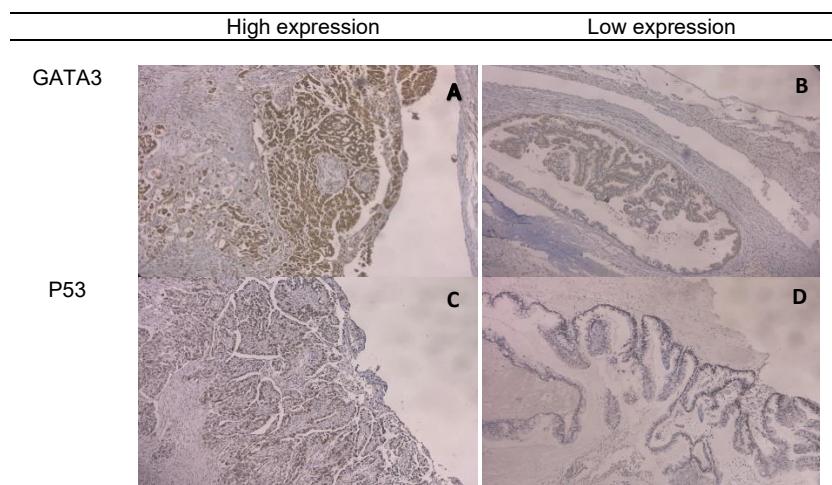


Figure A. Serous carcinoma, high immunoexpression of GATA3 (10 times). B. Serous carcinoma, low immunoexpression of GATA3 (4 times). C. Serous carcinoma, positive immunoexpression of P53 (10 times). D. Serous carcinoma, negative immunoexpression of P53 (4 times).

REFERENCES

1. Ciucci A, Zannoni GF, Buttarelli M, Martinelli E, Mascilini F, Petrillo M, et al. Ovarian Low and High Grade Serous Carcinomas: Hidden Divergent Features in the Tumor Microenvironment. *Oncotarget*. 2016;7(42):68033-43.
2. Narod S. Can Advanced-Stage Ovarian Cancer. *Nature Reviews Clinical Oncology*. 2016. doi: 10.1038/nrclinonc.2015.224.
3. Reid BM and Permuth JB, Sellers TA. Epidemiology of Ovarian Cancer: A Review. *Cancer Biol Med*. 2017. doi: 10.20892/j.issn.2095-3941.2016.0084.
4. Hollis RL and Gourley C. Genetic and Molecular Changes in Ovarian Cancer. *Cancer Biol Med*. 2016. doi: 10.20892/j.issn.2095-3941.2016.0024.
5. Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, et al. Ovarian Cancer Statistics. 2018. CA: A Cancer Journal for Clinicians. 2018;68(4):284-96.
6. World Health Organization. Globocan 2020 [Internet]. IARC. 2020;419:3-4. Available from: <https://gco.iarc.fr/today/data/factsheets/cancers/25-Ovary-factsheet.pdf>
7. World Health Organization. Global Cancer Observatory Indonesia [Internet]. IARC. 2018. Available from: <https://gco.iarc.fr/today/data/factsheets/populations/360-indonesia-factsheets.pdf>
8. Cheung AN, McCluggage WG, Kong CS, Longacre TA, Malpica A, Soslow RA, et al. Tumours of the Ovary. WHO Classification of Female Genital Tumours. 5th Ed. Lyon: IARC; 2020. p. 32-67.
9. Kim J, Park EY, Kim O, Schilder JM, Coffey DM, Cho CH, et al. Cell Origins of High-Grade Serous Ovarian Cancer. *Cancers*. 2018;10:433. doi: 10.3390/cancers10110433.
10. Mullaney LK, Liu Z, King ER, Wong KK, Richards JS. Wild-Type Tumor Repressor Protein 53 (TRP53) Promotes Ovarian Cancer Cell Survival. *Endocrinology*. 2012;153(4):1638-48. doi: 10.1210/en.2011-2131.
11. Ghoneum A, Afify H, Salih Z, Kelly M, Said N. Role of Tumor Microenvironment in Ovarian Cancer Pathobiology. *Oncotarget*. 2018;9(32):22832-49.
12. Shaco R and Robboy SJ. Normal Ovaries, Inflammatory and Non-neoplastic Conditions. In: Mutter GL and Prat J, editors. *Pathology of The Female Reproductive Tract*. 3rd ed. Philadelphia: Elsevier; 2014. p. 509-14.
13. Seidman JD, Ronnett BM, Shih IM, Cho KR, Kurman RJ. Epithelial Tumors of the Ovary. In: Kurman RJ, Ellenson LH, Ronnett BM, editors. *Blaustein's Pathology of the Female Genital Tract*. 7th ed. Switzerland: Springer; 2019. p. 842-46, 872. https://doi.org/10.1007/978-3-319-46334-6_14
14. Lino-Silva LS. Ovarian Carcinoma: Pathology Review with An Emphasis in Their Molecular Characteristics. *Chin Clin Oncol*. 2020. <http://dx.doi.org/10.21037/cco-20-31>.
15. Colvin EK. Tumor-Associated Macrophages Contribute to Tumor Progression in Ovarian Cancer. *Frontiers in Oncology*. 2014;4(137):1-6. doi: 10.3389/fonc.2014.00137.
16. Cheng H, Wang Z, Fu Li, Xu T. Macrophage Polarization in the Development and Progression of Ovarian Cancers: An Overview. *Front Oncol*. 2019;9:421. doi: 10.3389/fonc.2019.00421.
17. Nola RD, Menga A, Castegna A, Loizzi V, Ranieri G, Cicinelli E, et al. The Crowded Crosstalk between Cancer Cells and Stromal Microenvironment in Gynecological Malignancies: Biological Pathways and Therapeutic Implication. *Int J Mol Sci*. 2019;20:2401. doi: 10.3390/ijms20102401.
18. El-Araby AA, Denizli M, Kanlikilicer P, Bayraktar R, Ivan C, Rashed M, et al. GATA3 as a Master Regulator for Interactions of Tumor-Associated Macrophages with High-Grade Serous Ovarian Carcinoma. *Cellular Signalling*. 2020;68:109539. doi: 10.1016/j.cellsig.2020.109539.
19. Asif A, Mushtaq S, Hassan U, Akhter N and Azam M. Expression of GATA3 in Epithelial Tumors. *Pak Armed Forces Med J*. 2020;70(Suppl-1):S20-5.
20. Hanahan D and Weinberg RA. Hallmarks of Cancer: The Next Generation. *Cell*. 2011;144:646-74. doi:10.1016/j.cell.2011.02.013.
21. Zhou Q, Yang HJ, Zuo MZ and Tao YL. Distinct Expression and Prognostic Values of GATA Transcription Factor Family in Human Ovarian Cancer. *Journal of Ovarian Research*. 2022. doi:10.1186/s13048-022-00974-6.

22. Yusuf D, Butland SL, Swanson MI, Bolotin E, Ticoll A, Cheung WA, et al. The Transcription Factor Encyclopedia. *Genome Biology*. 2012;13(24):2-25.
23. Gilks CB and Clement PB. Ovary. In: Mills SE, editor. *Histology for Pathologist*. 4th edition. Lippincott Williams & Wilkins: Philadelphia; 2012. P.1120-2.
24. Agur AMR and Dalley AF, editors. *Grant's Atlas of Anatomy*. 14th edition. Lippincott Williams & Wilkins: Philadelphia; 2017. p.426.
25. Gilks B. Ovary. In: Goldblum JR, Lamps LW, McKenney JK, Myers JL, editors. *Rosai & Ackerman's Surgical Pathology*. 11th ed. Philadelphia: Elsevier Inc; 2018. p.1367.
26. Eroschenko VP. Ovary and Uterus-An overview. *diFiore's Atlas of Histology with Functional Correlations*. 12th ed. Baltimore: Lippincott William & Wilkins; 2013. p.508-12.
27. Atwi D and Hassell LA. Anatomy & Histology Ovary. *Pathology Outline* [Internet]. Available from: <https://www.pathologyoutlines.com/topic/ovarynontumornormalhistology.html>. Access on March 22nd 2023.
28. Brelje CT and Sorenson RL. Female Reproductive System [Internet]. Available from: <http://histologyguide.com/slideshow/MHS-259-ovary/18-slide-1.html>. Access on March 22nd 2023.
29. Lowe JS and Anderson PG, editors. *Female Reproductive System*. In: Stevens and Lowe's Human Histology. 4th edition. China: Elsevier Mosby; 2015. p.348-53.
30. Lowrie DJ Jr. *Histology An Essential Textbook*. New York: Thieme; 2020.
31. Pulsen F and Waschke J. *Sobotta: Innervation of Female Genitalia*. 16th ed. Germany: Elsevier; 2018. p.303.
32. Kumar V, Abbas AK, Aster JC. *Tumors of The Ovary*. In: *Robbins Basic Pathology*. 10th ed. Philadelphia: Elsevier Inc.; 2018. p.727-9.
33. Martini FH, Nath JL, Bartholomew EF. *The Reproductive System. Fundamentals of Anatomy & Physiology*. 11th ed. New York: Pearson; 2018. p.1073-4.
34. Mescher AL. *The Female Reproductive System*. *Junquiera's Basic Histology Text and Atlas*. 14th Ed. New York: McGraw Hill Education; 2016. p.460-6.
35. Garg K and Zaloudek C. *Tumors of the Female Genital Tract*. In: Fletcher CDM, editor. *Diagnostic Histopathology of Tumors*. 5th ed. Philadelphia: Elsevier; 2021. p.702-3.
36. Shisheboran MD and Genestie C. *Pathobiology of Ovarian Carcinoma*. *Chinese Journal of Cancer*. 2015;34(1).
37. Webb PM and Jordan SJ. *Epidemiology of Epithelial Ovarian Cancer*. *Best Pract Res Clin Obstet Gynaecol* [Internet]. 2017;41(2017):3–14. Available from: <http://dx.doi.org/10.1016/j.bpobgyn.2016.08.006>
38. Lheureux S, Gourley C, Vergote I, Oza AM. *Epithelial Ovarian Cancer*. *Lancet* [Internet]. 2019;393(10177):1240–53. Available from: [http://dx.doi.org/10.1016/S0140-6736\(18\)32552-2](http://dx.doi.org/10.1016/S0140-6736(18)32552-2).
39. Krzystyniak J, Ceppi L, Dizon DS, Birrer MJ. *Epithelial Ovarian Cancer: The Molecular Genetics of Epithelial Ovarian Cancer*. *Annals of Oncology* [Internet]. 2016;27(1):i4-i10. doi: 10.1093/annonc/mdw083.
40. Wentzensen N, Poole EM, Trabert B, White E, Arslan AA, Patel AV, et al. *Ovarian Cancer Risk Factors by Histologic Subtype: An Analysis from The Ovarian Cancer Cohort Consortium*. *Journal of Clinical Oncology* [Internet]. 2016;34(24). Available from: <http://dx.doi.org/10.1200/JCO.2016.66.8178>.
41. Ginting K. *Kualitas Hidup Penyintas Kanker Ovarium di RSUP Haji Adam Malik Medan* [Student Paper]. Medan: Universitas Sumatera Utara; 2019. Available from: <http://repositori.usu.ac.id/handle/123456789/26163>.
42. Shih I, Wang Y, Wang T. *The Origin of Ovarian Cancer Species and Precancerous Landscape*. *American Journal of Pathology* [Internet]. 2020;192(1):26-39.
43. Slomovitz B, Gourley C, Carey MS, Malpica A, Shih IM, et al. *Low-grade Serous Ovarian Cancer: State of the Science*. *Gynecologic Oncology*. 2019. doi: 10.1016/j.ygyno.2019.12.033.
44. Leo AD, Santini D, Ceccarelli C, Santandrea G, Palicelli A, Acquaviva G, et al. *Review What Is New on Ovarian Carcinoma: Integrated Morphologic and Molecular Analysis Following the New 2020 World Health Organization Classification of Female Genital Tumors*. *Diagnostics*. 2021;11:697. doi: 10.3390/diagnostics11040697.
45. Hunter SM, Anglesio MS and Ryland GL. *Molecular Profiling of Low Grade Serous Ovarian Tumours Identifies Novel*

Candidate Driver Genes. \ Oncotarget. 2015;6(35):37663-77.

46. Ricciardi E, Baert T, Ataseven B, Heitz F, Prader S, Bommert M, et al. Low-grade Serous Ovarian Carcinoma. *Geburtsh Frauenheilk.* 2018;78:972-6. doi: 10.1055/a-0717-5411.

47. Kobel M, Piskorz AM, Lee S, Lui S, LePage C, Marass F, et al. Optimized p53 Immunohistochemistry is An Accurate Predictor of TP53 Mutation in Ovarian Carcinoma. *J Pathol Clin Res.* 2016;2(4):247-58.

48. Cancer Genome Atlas Research Network. Integrated Genomic Analysis of Ovarian Carcinoma. *Nature.* 2011;474(7353):609-15.

49. Hsiang JC, Rui LH, Phui LL, Po HS, Lin YC, Yu CW, et al. GATA3 as A Master Regulator and Therapeutic Target in Ovarian High-Grade Serous Carcinoma. doi: 10.1002/ijc.31750.

50. Peres LC, Cushing HKL, Anglesio M, Wicklund K, Bentley R, Berchuck A, et al. Histotype Classification of Ovarian Carcinoma: A Comparison of Approaches. *Gynecol Oncol.* 2018;151(1):53-60.

51. Jones MR, Kamara D, Karlan BY. Genetic Epidemiology of Ovarian Cancer and Prospects for Polygenic Risk Prediction. *Gynecol Oncol.* 2017;147(3):705-13.

52. Cohen PA, Powell A, Bohm S, Gilks C B, Stewart CJR, Meniawy TM, et al. Chemotherapy Response Score is Prognostic in Tubo-ovarian High Grade Serous Carcinoma: A Systematic Review and Metaanalysis of Individual Patient Data. *Gynecol Oncol.* 2019;154(2):441-8.

53. Lisio MA, Fu L, Goyeneche A, Gao ZH, Telleria C. High-Grade Serous Ovarian Cancer: Basic Sciences, Clinical and Therapeutic Standpoints. *Int J Mol Sci.* 2019;20:952. doi:10.3390/ijms20040952.

54. Sung PL, Chang YH, Chao KC, Chuang CM. Global Distribution Pattern of Histological Subtypes of Epithelial Ovarian Cancer: A Database Analysis and Systemic Review. *Gynecol Oncol.* 2014;133(2):147-54.

55. Cheasley D, Wakefield MJ, Ryland GL, Allan PE, Alsop K, Kaushalya C, et al. The Molecular Origin and Taxonomy of Mucinous Ovarian Carcinoma. *Nat Commun.* 2019;10(1):3935.

56. Meagher NS, Wang L, Rambau PF. A Combination of The Immunohistochemistry Markers CK7 and SATB2 is Highly Sensitive and Specific for Distinguishing Primary Ovarian Mucinous Tumors from Colorectal and Appendiceal Metastases. *Mod Pathol.* 2019;32(12):1834-46.

57. Parra-Herran C, Lemer-Ellis J, Xu B. Molecular Based Classification Algorithm for Endometrial Carcinoma Categorizes Ovarian Endometrioid Carcinoma into Prognostically Significant Groups. *Mod Pathol.* 2017;30(12):1748-59.

58. Kobel M, Rahimi K, Rambau PF, Naugler C, LePage C, Meunier L, et al. An Immunohistochemical Algorithm for Ovarian Carcinoma Typing. *Int J Gynecol Pathol.* 2016;35(5):430-41.

59. Noe M, Ayhan A, Wang TL. Independent Development of Endometrial Epithelium and Stroma within The Same Endometriosis. *J Pathol.* 2018;245(3):265-9.

60. Bennett JA, Morales-Oyarvide V, Campbell S. Mismatch Repair Protein Expression in Clear Cell Carcinoma of the Ovary: Incidence and Morphologic Associations in 109 Cases. *Am J Surg Pathol.* 2016;40(5):656-63.

61. Brierley JD, Gospodarowicz MK and Wittekind C, editors. *TNM Classification of Malignant Tumours.* 8th ed. Oxford: Wiley-Blackwell; 2017.

62. Babu MM, Luscombe NM, Aravind L, Gerstein M and Teichmann SA. Structure and Evolution of Transcriptional Regulatory Networks. *Current Opinion in Structural Biology.* 2004;14(3):283-91. doi:10.1016/j.sbi.2004.05.004. PMID 15193307.

63. Griffiths AJF, Miller JH, Suzuki DT, Lewontin RC and Gelbart WM. *Transcription and RNA polymerase.* ISBN 0-7167-3520-2.

64. El-Arabe AA, Abdalla M and Abd-Allah AR. GATA3 and Stemness of High-grade Serous Ovarian Carcinoma: Novel Hope for the Deadliest Type of Ovarian Cancer. *Japan Human Cell Society.* 2020. doi: 10.1007/s13577-020-00368-0.

65. Chen, Bates DL, Dey R, Chen P-H, Machado ACD, Laird-Offringa IA, et al. DNA Binding by GATA Transcription Factor Suggests Mechanisms of DNA Looping and Long-Range Gene Regulation Yongheng. *Cell Reports.* 2012;1197-206. doi: 10.1016/j.celrep.2012.10.012.

66. Terzic T, Mills AM, Zadeh S, Atkins KA and Hanley KZ. GATA3 Expression in Common Gynecologic Carcinomas: A Potential Pitfall. *International Journal of Gynecological Pathology*(2018): p 1–8. doi: 10.1097/PGP.0000000000000054.

67. Guo Y, Yu P, Liu Z, Maimaiti Y, Chen C, Zhang Y, et al. Prognostic and Clinicopathological Value of GATA binding protein 3 in Breast Cancer: A Systematic Review and Meta-analysis. 2017. doi: 10.1371/journal.pone.0174843.

68. Chou J, Provot S and Werb Z. GATA3 In Development and Cancer Differentiation: Cells GATA Have It. *Journal Of Cellular Physiology*. 2009;1-8.

69. El-Arabe AA, Abdalla M and Abd-Allah AR. GATA3 and Stemness of High-Grade Serous Ovarian Carcinoma: Novel Hope for The Deadliest Type of Ovarian Cancer. Japan Human Cell Society. 2020. doi: 10.1007/s13577-020-00368-0.

70. El-Arabe AA, Denizli M, Kanlikilicera P, Bayraktara R, Ivana C, Rasheda M, et al. GATA3 as A Master Regulator for Interactions of Tumor-Associated Macrophages with High-Grade Serous Ovarian Carcinoma. *Cellular Signalling*. 2020;68:1-25.

71. Davis DG, Siddiqui MT, Oprea-Ilies G, Steven K, Osunkoya AO, et al. GATA-3 and FOXA1 Expression is Useful to Differentiate Breast Carcinoma from Other Carcinomas. 2016;47(1):26-31. doi: 10.1016/j.humpath.2015.09.015.

72. Qi Y, Mo K, Zhang T. A Transcription Factor that Promotes Proliferation, Migration, Invasion, and Epithelial–Mesenchymal Transition of Ovarian Cancer Cells and Its Possible Mechanisms. *BioMed*. 2021;20:83. doi: 10.1186/s12938-021-00919-y.

73. El-Arabe AA, Denizli M, Kanlikilicer P, Bayraktar R, Ivan C, Rashed M, et al. GATA3 as a Master Regulator for Interactions of Tumor-Associated Macrophages With High-Grade Serous Ovarian Carcinoma. *Cellular Signalling*. 2020. doi: 10.1016/j.cellsig.2020.109539.

74. Lin HY, Liang YK, Dou XW, Chen CF, Wei XL, Zeng D, et al. Notch3 Inhibits Epithelial–Mesenchymal Transition in Breast Cancer Via A Novel Mechanism, Upregulation Of GATA-3 Expression. *Oncogenesis*. 2018;7:59. doi: 10.1038/s41389-018-0069-z.

75. Zaidan N and Ottersbach K. 2018 The Multi-faceted Role of GATA3 in Developmental Haematopoiesis. *Open Biol*. 8: 180152. doi: 10.1098/rsob.180152.

76. Ordon NG. Value of GATA3 Immunostaining in Tumor Diagnosis: A Review. *Adv Anat Pathol*. 2013;20:352–60.

77. Ho IC, Tai TS, Pai SY. GATA3 and The T-cell Lineage: Essential Functions Before And After T-Helper-2-Cell Differentiation. *Nature Reviews Immunol*. 2009;9:1-11.

78. Oosterwegel M, Timmerman J, Leiden J and Clevers H. Expression of GATA-3 during Lymphocyte Differentiation And Mouse Embryogenesis. 1992;3(1):1-11. doi: 10.1155/1992/27903.

79. Fararjeh AFS, Tu SH, Chen LC, Liu YR, Lin YK, Chang HL, et al. The Impact of the Effectiveness of GATA3 as A Prognostic Factor in Breast Cancer. *Human Pathology*. 2018;80:219–30. doi: 10.1016/j.humpath.2018.06.004.

80. Prakosa T, Askandar B and Fauziah D. Ekspresi p53 Mutan dan Caspase 3 sebagai Faktor Prediksi terhadap Operabilitas Kanker Serviks IIB setelah Mendapat Kemoterapi Neoadjuvan. *Indonesian Journal of Cancer*. 2013;7(2):61-7.